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EXTREMAL RANK-ONE CONVEX INTEGRANDS AND A
CONJECTURE OF ŠVERÁK

ANDRÉ GUERRA

Abstract. We show that, in order to decide whether a given probability mea-
sure is laminate, it is enough to verify Jensen’s inequality in the class of extremal
non-negative rank-one convex integrands. We also identify a subclass of these ex-
tremal integrands, consisting of truncated minors, thus proving a conjecture made
by Šverák in (Arch. Ration. Mech. Anal. 119 293-300, 1992 ).

1. Introduction

Since its introduction in the seminal work [30] of Morrey, quasiconvexity has
played an important role not just in the Calculus of Variations [10, 12, 20, 37] but
also in problems from other areas of mathematical analysis, for instance in the the-
ory of compensated compactness [34, 42]. Nonetheless, this concept is still poorly
understood and has been mostly studied in relation with polyconvexity and rank-one
convexity, which are respectively stronger and weaker notions that are easier to deal
with (we refer the reader to Section 2 for terminology and notation). An outstand-
ing open problem in the area is Morrey’s problem, which is the problem of deciding
whether rank-one convexity implies quasiconvexity, so that the two notions coincide.
A fundamental example [40] of Šverák shows that, without further assumptions on
the integrands, this implication does not hold in dimensions 3×2 or higher and, more
recently, Grabovsky [15] has found a different example in dimensions 8× 2 which
moreover is 2-homogeneous. The problem in dimensions 2× 2, in particular, remains
completely open, but in the last two decades evidence [2, 13, 16, 24, 31] towards a
positive answer in this case has been piling up.

We would like to emphasize that a solution of Morrey’s problem in dimensions 2×2
would still leave unanswered very natural questions in the spirit of Morrey’s original
thoughts concerning the relation between rank-one convexity and quasiconvexity:
for instance, is it the case that, under homogeneity assumptions, rank-one convexity
implies quasiconvexity at zero, or more generally quasiconvexity at rank-one matrices?
This is essentially the question addressed by Kirchheim–Kristensen in [23], where
it was shown that this is true for 1-homogeneous integrands. This can be seen as a
rigidity result for rank-one convex integrands: if one requires the integrands to be 1-
homogeneous then one cannot prescribe arbitrary behaviour near the rank-one cone.
Some of the results in this paper can be interpreted in a similar fashion: we shall see
that rank-one convex integrands which vanish on the cone of singular matrices enjoy
improved homogeneity properties.
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An easier (but still unsolved) version of Morrey’s problem in dimensions 2 × 2 is
to decide whether rank-one convex integrands in the space of 2× 2 symmetric matri-
ces are quasiconvex. In this direction, Šverák introduced in [39] new quasiconvex
integrands, which were later generalized in [14]—these integrands have played an im-
portant role in studying problems related to the Calculus of Variations, for instance
in building counterexamples to the regularity of elliptic systems [33] or in the compu-
tation of rank-one convex hulls of compact sets [41]. For any n×n symmetric matrix
A, these integrands are defined by

Fk(A) ≡

{
| detA| A has index k
0 otherwise

for k = 0, . . . , n; we recall that the index of a matrix is the number of its negative
eigenvalues. We also note that the integrand F0 is sometimes called det++ in the
literature, since its support is the set of positive definite matrices.

To understand the motivation of these integrands it is worth making a small ex-
cursion into some classical convex analysis. Given a real vector space V and a convex
set K ⊂ V, one can define the set of extreme points of K as the set of points which
are not contained in any open line segment contained in K. In general the set of
extreme points might be very small: this is what happens, for instance, when the set
is a convex cone C ⊂ V, since in this situation all non-zero vectors are contained in a
ray through zero. However, if we can find a convex base B for C, then we note that
such a ray corresponds to a unique point in B. If this is an extreme point of B then
we say that we have an extremal ray.

We are interested in the extreme rays of the cone C of rank-one convex integrands.
This cone has the inconvenient feature that it is not line-free: there is a collection
of elements v ∈ V such that, for any c ∈ C and any t ∈ R, the point c + tv is in C;
these are precisely the points v ∈ C ∩ (−C). It is quite clear that these points are
precisely the rank-one affine integrands. A possible way of eliminating rank-one affine
integrands is by demanding non-negativity from all integrands from C. This leads us
to the definition of extremality considered by Šverák(1): we say that a non-negative
rank-one convex integrand F is extremal if, whenever we have F = E1 +E2 for E1, E2

non-negative rank-one convex integrands, then each Ei is a non-negative multiple of
F . A weaker notion of extremality was introduced by Milton in [29] for the case of
quadratic forms, see also [17], but we shall not discuss this further here.

The importance of extreme points in convex analysis has to do with the Krein-
Milman theorem, which states that the closed convex hull of the set of extreme
points of a compact, convex subset K of a locally convex vector space is the whole
set K—informally, this means that the set of extreme points is a set of “minimal
information” needed to recover K. However, Klee [25] showed that Krein-Milman
theorem is generically true for trivial reasons: if we fix an infinite-dimensional Banach
space and we consider the space of its compact, convex subsets (which we can equip
with the Hausdorff distance so that it becomes a complete metric space), then for
almost every compact convex set K its extreme points are dense in K. Here we mean
"almost every" in the sense that the previous statement is false only in a meagre set.

(1)Another possible way of defining extremality, which does not require the assumption of non-
negativity, would be to say that F is extremal if a decomposition F = E1 +E2 for rank-one convex
Ei implies that F = λE1 +M for some λ > 0 and some rank-one affine integrand M ; however, the
first definition is already sufficiently strong, as Theorem 1.1 below shows.
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Despite this disconcerting result, the situation can be somewhat remedied with the
help of Choquet theory, which roughly states that, under reasonable assumptions, an
arbitrary point in K can be represented by a measure carried in the set of its extreme
points. For precise statements and much more information concerning Choquet the-
ory we refer the reader to the lecture notes [36] or to the monograph [27] and for
Krein-Milman-type theorems for semi-convexity notions see [22, 26].

We shall now explain the implications of Choquet theory in the context of Morrey’s
problem. It is well-known (see, for instance, the lecture notes [31]) that Morrey’s
problem is equivalent to a dual problem, which is the problem of deciding whether
the class of homogeneous gradient Young measures and the class of laminates are
the same. Fix a compactly supported Radon probability measure ν on Rn×n; for
simplicity we assume that ν has support contained in the interior of the cube Q ≡∏n2

i=1[0, 1] ⊂ Rn2 ∼= Rn×n. In order to decide whether ν is a laminate, we can resort to
an important theorem due to Pedregral [35], which states that ν is a laminate if
and only if Jensen’s inequality holds for any rank-one convex integrand f : Rn×n → R:

f(ν) ≤ 〈ν, f〉, ν ≡
∫
Rn×n

A dν(A).

Since the class of rank-one convex integrands is very large, the problem of deciding
whether a measure is a laminate is in general very hard. However, with the help of
Choquet theory, we can prove that one does not need to test ν against all rank-one
convex integrands, it being sufficient to test it in a strictly smaller class:

Theorem 1.1. Let A1, . . . , A2n2 be the vertices of the cube Q. A Radon probability
measure ν supported on the interior of Q is a laminate if and only if

g(ν) ≤ 〈ν, g〉

for all integrands g which are extreme points of the convex setf : Q→ [0,∞) :
2n×n∑
i=1

f(Ai) = 1, f is rank-one convex

 .

We note that the summation condition is simply a normalization which corresponds
to fixing a base of the cone of non-negative rank-one convex integrands on Q. We also
note that we assume that the support of ν is contained in the interior of a cube; for
constructions concerning laminates with supports on special sets we refer the reader
to [32].

Let us explain the relation between Šverák’s integrands and the above theorem.
In [39] Šverák observed that the polyconvex integrand | det | : Rn×n → [0,∞) is not
extremal, since | det | = det+ + det−, where as usual

det+ ≡ max(0, det), det− ≡ max(0,− det),

which are also polyconvex, and he then conjectured that the integrands det± are
extremal in Rn×n. However, he observed that these are not extremal in Rn×n

sym , since

det+ =
∑

k is even

Fk and det− =
∑

k is odd

Fk in Rn×n
sym ,
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and he also conjectured that each Fk is extremal in Rn×n
sym . In this paper we shall give

an affirmative answer to both conjectures(2):

Theorem 1.2. Given a minor M : Rn×n → R, let M± be its positive and negative
parts. Then M± are extremal non-negative rank-one convex integrands in Rn×n.

For k = 0, . . . , n, the integrands Fk : Rn×n
sym → R, are extremal non-negative rank-

one convex integrands in Rn×n
sym .

As we shall see in Section 4, this theorem is a consequence of the classification of
Null Lagrangians due to Ball-Currie-Olver [4].

Our interest in extremal integrands was ignited by the work [3] of Astala–
Iwaniec–Prause–Saksman, where it was shown that an integrand known as Burk-
holder’s function is extreme in the class of homogeneous, isotropic, rank-one convex
integrands; in fact, this integrand is also the least integrand in this class, in the sense
that no other element of the class is below it at all points. Burkholder’s function
was found in the context of martingale theory by Burkholder [8, 9] and was later
generalized to higher dimensions by Iwaniec [18]. This remarkable function is a
bridge between Morrey’s problem and important problems in Geometric Function
Theory [1, 19] and we refer the reader to the very interesting papers [2, 3, 18] and
the references therein for more details in this direction.

Finally, we give a brief outline of the paper. Section 2 contains standard definitions,
notation and briefly recalls some useful facts for the reader’s convenience. Section
3 comprises results concerning improved homogeneity properties of rank-one convex
integrands which vanish on isotropic cones. Section 4 is devoted to the proof of
Theorem 1.2. Finally, Section 5 elaborates on the relation between Choquet theory
and Morrey’s problem and we prove Theorem 1.1.

2. Preliminaries

In this section we will gather a few definitions and notation for the reader’s con-
venience. The material is standard and can be found for instance in the excellent
references [11] and [31].

Consider an integrand E : Rm×n → R. We say that E is polyconvex if E(A) is a
convex function of the minors of A, see [5]. If E is locally integrable, we say that E
is quasiconvex if there is some bounded open set Ω ⊂ Rn such that, for all A ∈ Rm×n

and all ϕ ∈ C∞0 (Ω,Rn),

E(A) ≤ −
∫

Ω

E(A+Dϕ(x)) dx.

This notion was introduced in [30] and generalized to higher-order derivatives by
Meyers in [28]. The case of higher derivatives was also addressed in [4], where it
was shown that quasiconvexity is not implied by the corresponding notion of rank-one
convexity if m > 2 and n ≥ 2. The integrand E is rank-one convex if, for all matrices
A,X ∈ Rm×n such that X has rank one, the function

t 7→ E(A+ tX)

(2)In fact, Šverák only conjectures extremality in the cone of quasiconvex integrands, so our
results are in this sense slightly stronger than his conjecture.



EXTREMAL RANK-ONE CONVEX INTEGRANDS AND A CONJECTURE OF ŠVERÁK 5

is convex. An equivalent definition of rank-one convexity is that E is rank-one convex
if, whenever (Ai, λi)

N
i=1 satisfy the (HN) conditions (c.f. [11, Def. 5.14]), we have

N∑
i=1

E(λiAi) ≤
N∑
i=1

λiE(Ai).

By a slight abuse of terminology we will call a collection (Ai, λi)
N
i=1 which satisfies the

(HN) conditions a prelaminate. It is also clear how to adapt the definition of rank-one
convexity to the more general situation where E is defined on an open set O ⊂ Rm×n.
Finally, E : Rd → R is separately convex if, for all x ∈ Rd and all i = 1, . . . , d, the
function t 7→ E(x+ tei) is convex; we denote by e1, . . . , ed the standard basis of Rd.

We recall that all real-valued rank-one convex integrands are locally Lipschitz con-
tinuous, a fact that we will often use implicitly. Moreover, if (m,n) 6= (1, 1), we
have

E convex ⇒6⇐ E polyconvex ⇒6⇐ E quasiconvex ⇒ E rank-one convex

while E quasiconvex⇐ E rank-one convex fails if n ≥ 2,m ≥ 3. The case n ≥ m = 2
is the content of Morrey’s problem.

We will only consider square matrices, so n = m. Besides polyconvexity, the
integrands det± : Rn×n → [0,∞) have two important properties: they are positively
n-homogeneous (in fact, they are n-homogeneous if n is even) and isotropic. A generic
integrand E : Rn×n → R is said to be p-homogeneous for a number p ≥ 1 if

E(tA) = |t|pE(A) for all A ∈ Rn×n and all t ∈ R;

it is positively p-homogeneous if the same holds only for t > 0. The integrand E is
isotropic if it is invariant under the left– and right–SO(n) actions, that is,

E(QAR) = E(A) for all Q,R ∈ SO(n).

This condition can be understood in a somewhat more concrete way with the help of
singular values. The singular values σ̃1(A) ≥ · · · ≥ σ̃n(A) ≥ 0 of a matrix A are the
eigenvalues of the matrix

√
AAT . We shall consider the signed singular values σj(A),

which are defined by

σj(A) = σ̃j(A) for 1 ≤ j ≤ n− 1, σn(A) = sign(detA)σ̃n(A).

As we shall only deal with the signed singular values, the word signed will sometimes
be omitted. The importance of singular values is largely due to the following standard
result (c.f. [11, §13]):

Theorem 2.1. Let A ∈ Rn×n. There are matrices Q,R ∈ SO(n) and real numbers
|σn| ≤ σn−1 ≤ · · · ≤ σ1 such that

A = RΣQ, Σ = diag(σ1, . . . , σn).

With the help of this theorem we can reinterpret isotropy as follows: consider the
polar decomposition A = Q

√
AAT for some Q ∈ O(n) and consider a diagonalization

of the positive-definite matrix
√
AAT , so R

√
AATR−1 = diag(σ̃1, . . . , σ̃n) for some

R ∈ SO(n). Here all the σ̃j’s are positive, but by flipping the sign of the last one if
detA < 0 we can take Q ∈ SO(n). Hence, if E is isotropic,

E(A) = E(Q
√
AAT ) = E(Rdiag(σ1, . . . , σn)RT ) = E(σ1, . . . , σn).

So isotropic integrands are functions of the signed singular values.
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When n = 2 isotropy is particularly simple to handle, since there is a simple way
of understanding the signed singular values of a matrix A ∈ R2×2. For this, we recall
the conformal–anticonformal decomposition: we can write

A ≡
[
a b
c d

]
=

1

2

[
a+ d b− c
c− b a+ d

]
+

1

2

[
a− d b+ c
b+ c d− a

]
≡ A+ + A−.

This corresponds to the decomposition

R2×2 = R2×2
conf ⊕ R2×2

aconf,

which is orthogonal with respect to the Euclidean inner product. Here R2×2
conf is the

space of conformal matrices while R2×2
aconf corresponds to the anticonformal matrices ;

these are the matrices that are scalar multiples of orthogonal matrices and have
respectively positive and negative determinant. This decomposition is particularly
useful for us because the singular values of A satisfy the identities

σ1(A) =
1

2

(√
|A|2 + 2| detA|+

√
|A|2 − 2| detA|

)
=

1√
2

(|A+|+ |A−|),

σ2(A) =
1

2

(√
|A|2 + 2| detA| −

√
|A|2 − 2| detA|

)
=

1√
2

(|A+| − |A−|),

where |A|2 = tr(ATA) denotes the usual Euclidean norm of a matrix. Hence, if n = 2
and E is isotropic, E(A) = E(|A+|, |A−|). In particular, the above formulae yield

2 detA = |A+|2 − |A−|2.
The above decomposition also allows one to identify R2×2 ∼= C2 by the linear isomor-
phism [

a b
c d

]
7→
(
(a+ d) + i(c− b), (a− d) + i(b+ c)

)
The advantage of this identification is that we can say that a integrand E : C2 → R
is rank-one convex if and only if the function

t 7→ E(z + tξ, w + tζ)

is convex for all (z, w) ∈ C2 and all (ξ, ζ) ∈ S1 × S1.
The conformal–anticonformal decomposition of R2×2 is also related to an important

rank-one convex integrand, commonly referred to as Burkholder’s function. This
function can be defined in any real or complex Hilbert space with the norm ‖ · ‖ by

Bp(x, y) = ((p∗ − 1)‖x‖ − ‖y‖)(‖x‖+ ‖y‖)p−1,

where p∗−1 = max(p−1, (p−1)−1); here and in the rest of the paper, when referring
to Bp, we implicitly assume that 1 < p < ∞. This remarkable function is zig-zag
convex, i.e.

t 7→ Bp(x+ ta, y + tb) is convex whenever ‖a‖ ≥‖b‖ ,
see [9], and it is also p-homogeneous. If the Hilbert space where Bp is defined is C,
the zig-zag convexity of Bp implies that the Burkholder function Bp : C × C → R
is rank-one convex. Since we are interested in non-negative integrands, we will also
deal with the integrand B+

p ≡ max(Bp, 0), which is also rank-one convex. Moreover,
B+

2 = det+, so B+
p can be seen as a "det+-type integrand", in the sense that it is

rank-one convex, isotropic and vanishes on some cone

Cp∗−1 = {(z, w) ∈ C× C : (p∗ − 1)|z| = |w|},



EXTREMAL RANK-ONE CONVEX INTEGRANDS AND A CONJECTURE OF ŠVERÁK 7

but it is more general since it can be homogeneous with any degree of homogeneity
strictly greater than one. We refer the reader to [18] for higher dimensional general-
izations of Bp and to [2] for extremality results concerning this integrand.

3. Homogeneity properties of a class of rank-one convex integrands

In this section we discuss homogeneity properties of rank-one convex integrands
which vanish on cones, both in two and in higher dimensions. We are interested in
the family of "isotropic" cones of aperture a ≥ 1,

Ca ≡ {(z, w) ∈ C2 : a|z| = |w|},
motivated by the fact that the Burkholder function Bp vanishes on Cp∗−1. When
a = 1 we have C1 = {det = 0}, which of course can be defined in any dimension.

Lemma 3.1. Let E : C × C → R be rank-one convex and assume that, for some
a ≥ 1, E is non-positive on Ca. Define

ha(t, k) =
1

t

(a− k)[t(k − 1)(a− 1)− (a+ 1)(k + 1)]

(a+ k)[t(k − 1)(a+ 1)− (a− 1)(k + 1)]

and let A = (z, w) be such that k ≡ |w|/|z| ≤ 1. Then, for t ≥ 1,

E(A) ≤ ha(t, k)E(tA).

Proof: Let us write, for real numbers x, y ∈ R, (x, y) ≡ (xz/|z|, yw/|w|) ∈ C × C,
so A = (|z|, k|z|). We fix t > 1 since when t = 1 there is nothing to prove. Let us
define the auxiliary points

A1 =
|z|
2

(1 + k + t− kt, 1 + k − t+ kt) ,

B1 =
|z|(1 + k)

a+ 1
(1, a) , B2 =

t|z|(1− k)

a+ 1
(1,−a) ,

see Figure 1. Simple calculations show that

A = λ1A1 + (1− λ1)B1, λ1 =
2(a− k)

(a− 1)(k + 1)− t(a+ 1)(k − 1)

A1 = λ2(tA) + (1− λ2)B2, λ2 =
1 + k + tk − t+ a(1 + k + t− kt)

2(a+ k)t

and it is easy to verify that B1 − A1 and B2 − tA are rank-one directions. One also
needs to verify that λ1, λ2 ∈ [0, 1], which is a lengthy but elementary calculation using
the fact that 0 ≤ k ≤ 1 ≤ a.

Observe that B1, B2 ∈ Ca and so E(B1) = E(B2) ≤ 0. Therefore, from rank-one
convexity, we have

E(A) ≤ (1− λ1)E(B1) + λ1(1− λ2)E(B2) + λ1λ2E(tA) ≤ λ1λ2E(tA)

and a simple calculation shows that λ1λ2 = ha(t, k). �

We now specialise the lemma to two important situations, in which one can say
more. Let us first assume that k = 0.

Proposition 3.2. Let E : C× C→ R be rank-one convex, positively p-homogeneous
for some p ≥ 1 and not identically zero. If there is some a ≥ 1 such that E = 0 on
Ca then p ≥ 1

a
+ 1.
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Figure 1. Bold lines are rank-one segments.

We note that this inequality is sharp: indeed, the zero set of the Burkholder
function Bp is Cp∗−1 and so, when 1 < p < 2, we have

a = p∗ − 1 =
1

p− 1
⇔ p =

1

a
+ 1.

Thus we can reinterpret this proposition as saying that, for 1 < p < 2, the Burkholder
function has the least possible order of homogeneity of rank-one convex integrands
which vanish on Cp∗−1.

Proof: In this proof we assume that a > 1, since the case a = 1 follows from
Lemma 3.3 below. We claim that there is some z ∈ C such that E(z, 0) > 0. Once
this is shown, the conclusion follows easily: take k = 0 in Lemma 3.1 to find that
E(A) ≤ Fa(t)E(A) where

Fa(t) = tp−1at+ a− t+ 1

at+ a+ t− 1

and A = (z, 0). Since E(A) > 0, we must have Fa(t) ≥ 1 for all t ≥ 1. Moreover,
Fa(1) = 1 and an elementary computation reveals that

dFa
dt

∣∣∣∣
t=1

= p− 1− 1

a

which is non-negative precisely when p ≥ 1
a

+ 1.
To finish the proof it suffices to prove the claim. Take an arbitrary z ∈ S1 and

take any rank-one line segment starting at (z, 0) and having the other end-point in
Ca; such a line must intersect C1, since a > 1, say at Pz. Note that E(Pz) ≥ 0, since
the function t 7→ E(tPz) = tpE(Pz) is convex. We conclude that E(z, 0) ≥ 0 with
equality if and only if E(Pz) = 0, in which case E is identically zero along the entire
rank-one line segment.

To prove the claim we want to show that if E(z, 0) = 0 for all z ∈ C then E is
identically zero, so let us make this assumption. Then, from the previous discussion,
we see that E is identically zero in the "outside" of Ca, i.e. in

C+
a ≡ {(z, w) ∈ C× C : a|z| > |w|}.
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Moreover, given any point P in the interior of Ca, there is a rank-one line segment
through P with both endpoints, say P1, P2, in C+

a ; this is the case because we assume
a > 1. But E is zero in a neighbourhood of Pi and since it is convex along the
rank-one line segment [P1, P2] we conclude that it is also zero at P . �

We remark that, in one dimension, the only homogeneous extreme convex inte-
grands are linear (c.f. Proposition 5.3) while, from the results of Section 4, for
n > 1 there are extremal rank-one convex integrands in Rn×n which are positively
k-homogeneous for any k ∈ {1, . . . , n}. It would be interesting to know whether there
are extremal homogeneous integrands with other degrees of homogeneity, or whether
there is an upper bound for the order of homogeneity of such integrands. This is
related to the problem of deciding whether the Burkholder function B+

p is extreme
in the whole class of non-negative rank-one convex integrands, but we do not discuss
this question further in this paper.

If we set a = 1 in Lemma 3.1, so C1 = {det = 0}, we see that h1(t, k) = t−2 and
we find the estimate t2E(A) ≤ E(tA) for t ≥ 1. In fact, this holds in any dimension,
and the proof is a simple variant of the proof of Lemma 3.1.

Lemma 3.3. Let E : Rn×n → R be a rank-one convex integrand which is non-positive
on the cone {det = 0}. Then for all A ∈ Rn×n, E satisfies

tnE(A) ≤ E(tA) if 1 ≤ t.

tnE(A) ≥ E(tA) if 0 < t ≤ 1.

Proof: Let us begin by observing that the second inequality follows from the first.
Indeed, given a matrix A ∈ Rn×n and 0 < t < 1, let B ≡ tA and apply the first
inequality to B to get

E(tA) = E(B) = tn
1

tn
E(B) ≤ tnE

(
1

t
B

)
= tnE(A);

this can be done since 1 < 1
t
. Hence we shall prove only the first inequality.

We begin by proving the statement in the case where A is diagonal, so there are real
numbers σj such that A = diag(σ1, . . . , σn). Let A0 ≡ A and define, for 1 ≤ j ≤ n,

Aj = diag(tσ1, . . . , tσj, σj+1, . . . , σn) Bj = diag(tσ1, . . . , tσj−1, 0, σj+1, . . . , σn).

Hence, for any 1 ≤ j ≤ n,

Aj−1 =
1

t
Aj +

t− 1

t
Bj. (3.4)

This is a splitting of Aj−1 since we are assuming that t > 1 and also

Aj −Bj = diag(0, . . . , 0, tσj, 0, . . . , 0),

which is a rank-one matrix. Iterating (3.4) we find

A0 =
1

tn
An +

n∑
j=1

t− 1

tj
Bj (3.5)

and by construction this is a prelaminate. Thus rank-one convexity of E yields

E(A) = E(A0) ≤ 1

tn
E(An) +

n∑
j=1

t− 1

tj
E(Bj) ≤

1

tn
E(tA) (3.6)

since det(Bj) = 0 for all 1 ≤ j ≤ n, hence E(Bj) ≤ 0, and also An = tA by definition.
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In the case where A is not diagonal, we consider the singular value decomposition
of Theorem 2.1, i.e. A = QΣR where Q,R ∈ SO(n) and Σ = diag(σ1, . . . , σn). We
see that (3.5) can be rewritten as

Σ =
1

tn
(tΣ) +

n∑
j=1

t− 1

tj
Bj

and so, multiplying this by Q and R, we get

A = QΣR =
1

tn
(tA) +

n∑
j=1

t− 1

tj
QBjR.

We still have det(QBjR) = det(Bj) = 0 and hence to finish the proof it suffices to
show that this decomposition of A is still a prelaminate. For this, we use the following
elementary fact:

for all A ∈ Rn×n and M ∈ GL(n), rank(AM) = rank(MA) = rank(A).

The splittings used to obtain this prelaminate are rotated versions of (3.4), i.e.

QAj−1R =
1

t
QAjR +

t− 1

t
QBjR

and this is still a legitimate splitting since

rank(QBjR−QAjR) = rank(Bj − Aj) = 1. �

As a simple consequence of the lemma, we find a rigidity result for decompositions
of positively n-homogeneous integrands.

Proposition 3.7. Let E1, E2 : Rn×n → R be rank-one convex integrands which are
non-positive on {det = 0} and assume there is some positively n-homogeneous inte-
grand F such that F = E1 + E2. Then each Ei is positively n-homogeneous.

Proof: Define the "homogenized" integrands Eh
i : Rn×n → R by

Eh
i (A) ≡

|A|nEi
(
A
|A|

)
A 6= 0

0 A = 0

so that the lemma yields

if |A| < 1 then Ei(A) ≤ Eh
i (A),

if |A| > 1 then Ei(A) ≥ Eh
i (A).

Our claim is that Ei = Eh
i . Since F = E1 + E2 it follows that

F ≤ Eh
i + Eh

2 in U ≡ {A ∈ Rn×n : |A| ≤ 1}.
and we have equality on the sphere {A ∈ Rn×n : |A| = 1}, where Ei = Eh

i . As
both sides of the inequality are positively n-homogeneous they must be equal in the
whole set U and so Ei = Eh

i in U . An identical argument establishes equality in the
complement of U . �

Remark 3.8. The proofs of Lemma 3.3 and Proposition 3.7 are fairly robust. In
particular, a similar statement holds if the integrands Ei are defined in Rn×n

sym instead
of Rn×n. Indeed, Rn×n

sym is the set of (real) matrices that can be diagonalized by
rotations. Thus, the prelaminate built in the proof of Lemma 3.3 has support in
Rn×n

sym if A is symmetric: for the nondiagonal case, one can take R = Q−1.



EXTREMAL RANK-ONE CONVEX INTEGRANDS AND A CONJECTURE OF ŠVERÁK 11

Returning to the case n = 2, it would be interesting to have a result analogous
to Proposition 3.7 for integrands vanishing on cones of aperture greater than one.
However, it does not seem possible to deduce this directly from Lemma 3.1. For the
proof of Proposition 3.7 to work in the case a = p∗ − 1 > 1 one would need at least
the inequality hp∗−1(t, 0) ≤ t−p for all t ≥ 1. However, this does not hold (in fact, the
reverse inequality is true) and the proof of Proposition 3.2 already shows that, near
t = 1, Fa(t) = tpha(t, 0) ≥ 1 whenever t ≥ 1 and p ≥ 1

a
+ 1.

4. Proof of extremality for truncated minors

This section is dedicated to the proof of Theorem 1.2. Although truncated minors
are not linear along rank-one lines, they are piecewise linear along such lines. For this
reason, it will be useful to have at our disposal the classification of rank-one affine
integrands, which is due to Ball [5] in dimensions three or lower, Dacorogna [11]
in higher dimensions and also Ball-Currie-Olver [4] in the case of higher order
quasiconvexity. Given an open set O ⊂ Rn×n and an integrand E : O → R we say
that E is rank-one affine if both E and −E are rank-one convex; such integrands are
also often called Null Lagrangians or quasiaffine.

Theorem 4.1. Let O ⊂ Rn×n be a connected open set and consider a rank-one affine
integrand E : O → R. Then E(A) is an affine combination of the minors of A.

More precisely, let M(A) be the matrix consisting of the minors of A and let τ(n) ≡
(2n)!/(n!)2 be its length. There is a constant c ∈ R and a vector v ∈ Rτ(n) such that

E(A) = c+ v ·M(A) for all A ∈ O.

This theorem is essentially a particular case of [4, Theorem 4.1], the only difference
being that in this paper the authors deal only with integrands defined on the whole
space. We briefly sketch how to adapt their proof to our case. The first result needed
is the following:

Lemma 4.2. Let O ⊂ Rn×n be open. A smooth integrand E : O → R is rank-one
affine if and only if, for any k ≥ 2,

DkE(A)[v1 ⊗ w1, . . . , vk ⊗ wk] = 0

for all A ∈ O and all vi, wi ∈ Rn with w1, . . . , wk linearly dependent.
In particular, when O is connected, any continuous rank-one affine integrand E is

a polynomial of degree at most n.

We remark that our proof is very similar to the one in [5, Theorem 4.1].

Proof: We recall that a smooth integrand E is rank-one affine if and only if

D2E(A)[v ⊗ w, v ⊗ w] = 0 for all v, w ∈ Rn (4.3)

and so clearly one of the directions of the lemma holds. Hence let us assume that E
is rank-one affine and fix some point A ∈ O. Define the 2k-tensor T : (Rn)2k → R by

T [v1, . . . , vk, w1, . . . , wk] ≡ DkE(A)[v1 ⊗ w1, . . . , vk ⊗ wk].

Moreover, since E is rank-one affine, T is alternating. This follows from the following
claim: if wj = wl for some j 6= l, then

T [v1, . . . , vk, w1, . . . , wk] = 0.
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To see why this claim is true, we note that it certainly holds when k = 2, since (4.3)
implies that

0 = D2E[(v1 + v2)⊗ w, (v1 + v2)⊗ w]

= D2E(A)[v1 ⊗ w, v2 ⊗ w] +D2E(A)[v2 ⊗ w, v1 ⊗ w]

since D2E(A)[v1 ⊗ w, v1 ⊗ w] = 0 and the same with v2 in the place of v1. For a
general k ≥ 2, we use implicit summation to see that

DkE(A)[v1 ⊗ w1, . . . , vk ⊗ wk] =
∂kE(A)

∂Aα1
i1
. . . ∂Aαkik

vi11 . . . v
ik
k w

α1
1 . . . wαkk

=
∂k−2

∂Aα1
i1
. . . ∂̂A

αj
ij
. . . ∂̂Aαlil . . . ∂A

αk
ik

[
∂2E(A)

∂A
αj
ij
∂Aαlil

v
ij
j v

il
l w

αj
j w

αl
l

]
×

× vi11 . . . v̂
ij
j . . . v̂

il
l . . . v

ik
k w

α1
1 . . . ŵ

αj
j . . . ŵαll . . . wαkk

where ·̂ represents an omitted term. Now we can apply the k = 2 case to the term in
square brackets to see that

T [v1, . . . , vk, w1, . . . , wk] = 0

as wished.
To prove the lemma under the assumption that E is smooth, let us take w1, . . . , wk

linearly dependent, so we can suppose for simplicity that wk = w1 + · · ·+wk−1. Then

T [v1, . . . , vk, w1, . . . , wk−1, w1 + · · ·+ wk−1] = 0

since T is linear and alternating. The last statement of the lemma follows by observing
that the first part implies that Dn+1E(A) = 0 for all A ∈ O.

When E is merely continuous, let ρ be the standard mollifier and let ρε(A) =

ε−n
2
ρ(A/ε) for ε > 0. Fix A ∈ O and find an ε > 0 such that dist(A, ∂O) > ε. Then

Eε ≡ ρε ∗ E is smooth and rank-one affine and hence

DkEε(A)[v1 ⊗ w1, . . . , vk ⊗ wk] = 0

whenever w1, . . . , wk are linearly dependent. Since DkEε converges to DkE locally
uniformly, the conclusion of the lemma follows. �

Using the lemma, we see that in order to prove the theorem it suffices to consider
rank-one affine integrands which are homogeneous polynomials, so let us take such an
integrand E which is a homogeneous polynomial of some degree k. Given any A ∈ O,
the total derivative DkE(A) is a symmetric k-linear function DkE(A) : (Rn×n)k → R;
we remark that this operator has as domain the whole matrix space and not just a
subset of it. There is an isomorphism between the space of k-homogeneous rank-one
affine integrands and the space of symmetric k-linear functions (Rn×n)k → R and the
proof in [4] is unchanged in our case.

We recall that a generic symmetric rank-one matrix is of the form cv ⊗ v for some
v ∈ Rn with |v| = 1 and some c ∈ R. Hence, we have the following analogue of
Lemma 4.2:

Lemma 4.4. Let O ⊂ Rn×n
sym be open. A smooth integrand E : O → R is rank-one

affine if and only if, for any k ≥ 2,

DkE(A)[v1 ⊗ v1, . . . , vk ⊗ vk] = 0
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for all A ∈ O and all vi, wi ∈ Rn with v1, . . . , vk linearly dependent.

From this we deduce, by the same arguments as in the situation above, the following
result:

Theorem 4.5. Let O ⊂ Rn×n
sym be a connected open set and consider a rank-one affine

integrand E : O → R. Then there is a constant c ∈ R and a vector v ∈ Rτ(n) such
that

E(A) = c+ v ·M(A) for all A ∈ O.

In order to apply Theorems 4.1 and 4.5 to the integrands we are interested in,
we need to know that its supports are connected (in general, it is clear that any
integrand with disconnected support cannot be extremal). Given a minor M , let
OM ≡ {M > 0}. Moreover, each Fk has support in the set

Ok ≡ {A ∈ Rn×n
sym : A has index k and is invertible}.

Lemma 4.6. For any minor M the set OM is connected. Moreover, for k = 0, . . . , n,
the sets Ok are connected.

Proof: For the first part, let M be an s× s minor. Let us make the identification

Rn×n ∼= Rs×s × R(n−s)×(n−s)

so that M(A) = det(Ps(A)), where Ps is the projection of Rn×n onto Rs×s. Hence we
see that, under this identification,

OM = {A ∈ Rs×s : det(A) > 0} × R(n−s)×(n−s).

Since both spaces are connected and the product of connected spaces is connected,
OM is connected as well.

For the second part, note that the set Ok is the set of matrices A for which there is
some Q ∈ SO(n) and some diagonal matrix Λ = diag(a1, . . . , ak, b1, . . . , bn−k), where
ai < 0 and bj > 0, such that QAQT = Λ. Clearly the set of Λ’s with this form can be
connected to diag(−Ik, In−k) by a path in Ok; here Il is an l×l identity matrix. Hence
it suffices to prove that there is a continuous path in Ok connecting A = QΛQT to Λ.
Such a path is given by A(t) = Q(t)AQ(t)T , where Q : [0, 1]→ SO(n) is a continuous
path with Q(0) = I,Q(1) = Q. �

We are finally ready to prove the extremality of truncated minors and of Šverák’s
integrands.

Proof of Theorem 1.2: Let M be a minor and let E1, E2 : Rn×n → [0,∞) be rank-
one convex integrands such that M+ = E1 + E2. For concreteness, let us say

M

a11 . . . a1n
... . . . ...
an1 . . . ann

 = det

ai1j1 . . . ai1jk
... . . . ...

aikj1 . . . aikjk

 .
Each Ei is zero outside OM and, in this set, it is rank-one affine, so by Theorem 4.1
there are constants ci and vi ∈ Rτ(n) such that

Ei(A) = ci + vi ·M(A) for all A ∈ OM
and in fact, by continuity, this holds in the entire set OM = {M ≥ 0}.
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Clearly we must have ci = 0. Let us write, for some vectors vji ∈ R(nj)×(nj),

Ei(A) =
n∑
j=1

vji ·Mj(A) in OM ,

where Mj(A) is the matrix of the j-th order minors of A (this is denoted by adjj(A)
in [11]).

We observe that, given some s and some minor M ′ of order s, there is a matrix A
such that M ′ is the only minor of order s that does not vanish at A. Indeed, if

M ′

a11 . . . a1n
... . . . ...
an1 . . . ann

 = det

ai′1j′1 . . . ai′1j′s... . . . ...
ai′sj′1 . . . aisj′s


then we can take a matrix A whose only non-zero entries are the entries ai′αj′α for
α ∈ {1, . . . , s} and set these entries to one, so M ′(A) = 1. Since all other entries of
A are zero we see that all other minors of order s vanish at A. Note, moreover, that
A has rank s.

The previous observation, applied with s = k andM = M ′, shows that for A ∈ OM
we have vki ·Mk(A) = λiM(A), where λi ∈ R is the entry of vki corresponding to M .
We now prove that all the vectors vji , j 6= k, are zero.

Let j ≤ k be the lowest integer for which vji 6= 0 and suppose that j < k. Given
any minorM ′ of order j, sayM ′ = eα ·Mj for some α, there is an A with rank(A) = j
so that M ′ is the only minor of order j that does not vanish at A. Since A has rank
j all of its (j + 1) × (j + 1) minors vanish and, in particular, M(A) = 0 and hence
A ∈ OM . Since j is the lowest integer for which vji 6= 0 we have

M(A) = 0 = Ei(A) = vji ·Mj(A) = (vji )αM
′(A).

Since α was chosen arbitrarily, this is a contradiction and hence we have j = k.
Let j ≥ k be the highest integer for which vji 6= 0 and suppose that j > k. Given

any minor M ′ of order j, say M ′ = eα ·Mj for some α, there is an A such that M ′ is
the only minor of order j that does not vanish at A; moreover, by flipping the sign
of the i1-th row of A, if need be, we can assume that A ∈ OM . Since j > k is the
highest integer for which vji 6= 0, by computing

tkM(A) = M(tA) = E1(tA) + E2(tA) =
n∑
j=1

tj(vj1 + vj2) ·Mj(A)

and sending 0 < t ↗ ∞ we see that we must have (vj1 + vj2)α = 0 and also that the
sign of Ei(tA) is, for large t, the sign of (vji )αM

′(A); hence (vji )α = 0 for i = 1, 2.
Moreover, since α was chosen arbitrarily we have vji = 0 and we find a contradiction;
thus j = k.

The two previous paragraphs show that, in OM ,

Ei(A) = vki ·Mk(A),

and we already know that vki ·Mk(A) = λiM(A), so the proof that M+ is extremal
is complete. The fact that M− is extremal follows from the identity M− = M+(J ·),
where J = (jαβ), jαβ = δαβ(1− 2δαi1), so J changes the sign of the i1-th row.

For the second part of the theorem take some k ∈ {0, . . . , n} and assume that there
are rank-one convex integrands E1, E2 : Rn×n

sym → [0,∞) such that Fk = E1 +E2. The
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integrand Fk has support in Ok, which by Lemma 4.6 is connected, and in this set
each Ei is rank-one affine, so Theorem 4.5 implies that there are ci ∈ R, vi ∈ Rτ(n)

such that
Ei(A) = ci + vi ·M(A) for all A ∈ Ok.

By continuity this in fact holds in Ok. From Remark 3.8 we see that each Ei has to be
positively n-homogeneous and therefore Ei = αi det in Ok, where αi is the last entry
of vi. Since Ei ≥ 0 we must have, by possibly changing the sign of αi, Ei = αi| det |
in Ok. Moreover, Ei = 0 outside Ok, and so indeed Ei = αiFk as wished. �

5. Choquet theory and Morrey’s problem

In this section we shall see the implications of Choquet theory for Morrey’s problem.
Let us introduce some notation: given a number d ∈ N, let Qd = [0, 1]d, denote by
A1, . . . , A2d its vertices and consider the cone

Cc
d ≡ {f : Qd → [0,∞) : f is convex}.

In a similar fashion we define the cone Csc
d of non-negative separately convex functions

on Qd and when d = n×m for some n,m ∈ N, we have the cones Cqc
d and Crc

d of non-
negative quasiconvex and rank-one convex integrands. These are closed convex cones
in the locally convex vector space RQd of real-valued functions on Qd; the topology on
RQd is the product topology, i.e. the topology of pointwise convergence. In particular,
for any x ∈ Qd the evaluation functionals εx : f 7→ f(x) are continuous.

We claim that each of the above cones has a compact, convex base:

B�
d ≡ C�d ∩

{
f ∈ RQd :

2d∑
i=1

f(Ai) = 1

}
, � ∈ {c, qc, rc, sc};

here we only take � ∈ {qc, rc} if d = n×m. Clearly each B�
d is a closed, convex base

for C�d , so it suffices to see that Bsc
d is compact. For this, note that a separately convex

function on Qd attains its maximum at some Ai and, since all functions f ∈ Bsc
d are

non-negative, we have f ≤ 1 in Qd. This shows that Bsc
d ⊂ [0, 1]Qd , which is a compact

set by Tychonoff’s Theorem, and our claim is proved.
The main tool of this section is the following powerful result:

Theorem 5.1 (Choquet). Let K be a metrizable, compact, convex subset of a locally
convex vector space X. For each f ∈ K there is a regular probability measure µ on
K which is supported on the set Ext(K) of extreme points of K and which represents
the point f : for all ϕ ∈ X∗,

ϕ(f) =

∫
Ext(K)

ϕ dµ.

For a proof see, for instance, [36, §3]. We note that in general—and this is also
the case in our situation—the representing measure is not unique. In order to apply
this theorem to B�

d , we need to show that this set is metrizable and this can be done
by using a simple result from point-set topology; for a proof see, for instance, [27,
Lemma 10.45].

Lemma 5.2. Let K be a compact Hausdorff space. Then K is metrizable if and only
if there is a countable family of continuous functions on K which separates points.
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In our situation, it is easy to see that such a family exists: indeed, let xn ∈ Qd be a
countable set of points which is dense in Qd and consider the evaluation functionals
εxn : f 7→ f(xn) on B�

d . These functionals are continuous on B�
d and separate points,

since all elements of B�
d are continuous real-valued functions on Qd. Therefore the

lemma implies that B�
d is metrizable, and hence Choquet’s theorem yields:

Proposition 5.3. Fix � ∈ {c, qc, rc, sc} and let ν be a regular probability measure in
Q. The measure ν satisfies f(ν) ≤ 〈ν, f〉 for all f ∈ C�d if and only if g(ν) ≤ 〈ν, g〉
for all g ∈ Ext(B�

d ).

Proof: Assume that we have Jensen’s inequality for all g ∈ Ext(B�
d ), take any f ∈ B�

d

and let µ be the measure given by Choquet’s theorem. If we take ϕ = εν in the
theorem, we can apply Fubini’s theorem to see that

f(ν) = εν(f) =

∫
Ext(B�d )

εν(g) dµ(g)

≤
∫

Ext(B�d )

∫
Q

g dν dµ(g)

=

∫
Q

∫
Ext(B�d )

gdµ(g)dν =

∫
Q

fdν.

Since any h ∈ C�d can be written uniquely as h = λf for some λ > 0, f ∈ B�
d , the

conclusion follows. �

Theorem 1.1 follows easily from Proposition 5.3. For the reader’s convenience, we
restate the theorem here:

Theorem 5.4. Let d = n2 and take a Radon probability measure ν supported in the
interior of Qd. Then ν is a laminate if and only if

g(ν) ≤ 〈ν, g〉
for all integrands g ∈ Ext(Brc

d ).

Proof: From Pedregal’s Theorem, the measure ν is a laminate if and only if Jensen’s
inequality holds for any rank-one convex integrand f : Rn×n → R:

f(ν) ≤ 〈ν, f〉, ν ≡
∫
Rn×n

A dν(A).

Note that if this inequality holds for all non-negative rank-one convex integrands then
it holds for any rank-one convex integrand: given any such f , one can consider the
new integrand

fk ≡ k + max(f,−k)

which is non-negative and rank-one convex, hence by hypothesis fk(ν) ≤ 〈ν, fk〉. This
in turn is equivalent to

max(f(ν),−k) ≤ 〈ν,max(f,−k)〉.
Sending k →∞ we find that f(ν) ≤ 〈ν, f〉, as we wished; note that f , being contin-
uous, is bounded by below on Qd.

Therefore, from Proposition 5.3, the theorem follows once we show that any rank-
one convex integrand g : Qd → [0,∞) can be extended to a rank-one convex integrand
f : Rn×n → R with g = f in the support of ν. This is a standard result, see [38]. �
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We end this section with some cautionary comments concerning the previous re-
sults. In the one dimensional case, where all the above cones coincide, the extreme
points are quite easy to identify; the oldest reference we found where this problem is
discussed is [6], but see also [27, §14.1].

Proposition 5.5. The set of extreme points of B1 is the set {ϕy, ψy : y ∈ [0, 1]},
where the functions ϕy, ψy are defined by

ϕy : x 7→ (x− y)+

1− y
for x ∈ [0, 1], y ∈ [0, 1), ϕ1 = 1{1},

ψy : x 7→ (y − x)+

y
for x ∈ [0, 1], y ∈ (0, 1], ψ1 = 1{0}.

In higher dimensions the various cones are different. In the case of convex inte-
grands, the set of extreme points of Cc

d for d > 1 is very different from the one-
dimensional case, since it is dense in this cone.

Theorem 5.6. Any finite continuous convex function on a convex domain U ⊂ Rd

can be approximated uniformly on convex compact subsets of U by extremal convex
functions.

This result was proved by Johansen in [21] for d = 2 and then generalized to
any d > 1 in [7]. In these papers the set of extremal convex functions is not fully
identified, but it is shown that there is a sufficiently large class of extremal convex
functions which approximate any given convex function well: these are certain poly-
hedral functions, i.e. functions of the form f = max1≤i≤k ai for some affine functions
a1, . . . , ak. This disturbing situation, however, is not too unexpected given the result
of Klee [25] already mentioned in the introduction. I do not know whether a similar
statement holds for the cones Cqc

n×m and Crc
n×m.
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